
Rounding Techniques in Approximation Algorithms

Lecture 15: Iterative Randomized Rounding and Isotropy
Lecturer: Nathan Klein

1 Overview

Over the past three units, we have learned how to exert more control over the ways in which we
round a solution x ∈ [0, 1]n to a linear program:

1. Independent Randomized Rounding. Here, we flip a coin independently for every variable i
and round it to 1 with probability xi and 0 otherwise. We have very little fine-grained control
over the resulting solution x. On the other hand, using Chernoff bounds we can argue that
the resulting solution has certain properties with high probability, e.g. getting congestion
O
(

log n
log log n

)
for multi-commodity flows. Typically, to argue that a property holds globally,

we need to lose a factor of approximately log n, as we also saw for k-edge-connectivity.

Overall: No guaranteed structure, strong concentration bounds.

2. Dependent Randomized Rounding. Here we showed that if x ∈ P for some polytope P
with integral vertices, then we can randomly round x to a vertex of P, thus imposing the
constraints of P on our solution. In the case that P was a matroid polytope, we showed
that our solution also obeys Chernoff bounds via randomized pipage rounding. In this
sense, dependent randomized rounding was a generalization of independent randomized
rounding where we can set P = [0, 1]n. So, here we are able to enjoy the nice properties of
independent randomized rounding with the additional structure of a matroid. We used
this to get a much better approximation algorithm for two k-edge-connectivity problems
(compared to independent randomized rounding) and an O

(
log n

log log n

)
approximation for

ATSP.

While powerful, there are two major limitations to this technique. First, often there is not a
natural integral polytope to use (other than the trivial [0, 1]n), in which case it’s not clear how
to start. Second, the polytopes we find, while integral, may not be matroids. In this case, we
do not necessarily get to use Chernoff bounds: in fact, in some cases we provably cannot. In
the approximation algorithm for Prize-Collecting TSP we studied, we decomposed x into
a distribution over spanning trees, but we did not prove anything about the concentration
properties of this distribution.

Overall: Some amount of guaranteed structure, strong concentration bounds in some cases.

3. Iterative Rounding and Relaxation. In iterative rounding, we keep all of the structure: we
simply increase variables to 1 (paying a penalty in the costs) and ensure all constraints are
met. We used this to give a 2-approximation for the survivable network design problem. In
iterative relaxation, we fix integral variables and iteratively drop (relax) constraints that are
close to being satisfied by the variables that are already integral. We used this to prove the
Beck-Fiala theorem and obtain bounded degree matroids.

1

In both cases, we have very fine-grained control over the structure of the solution. However,
we get no concentration bounds at all! In other words, if we care about a constraint, we need
to enforce it "manually" in the LP. This is problematic if there are many constraints we care
about.

Overall: Lots of guaranteed structure, no concentration bounds.

While dependent randomized rounding was strictly stronger, in some sense, than independent
randomized rounding, it seems incomparable to iterative rounding and relaxation and produces
very different kinds of results. For example, it is not at all clear how iterative methods could
be used to obtain an O

(
log n

log log n

)
approximation for ATSP, since there are exponentially many

constraints we need to keep track of. Conversely, dependent randomized rounding seems to have
little hope of obtaining bounded degree matroids.

Thus, a natural question is whether it is possible to get the best of both worlds: is there a
procedure that integrates randomized rounding and iterative rounding (or relaxation) to produce
solutions with lots of guaranteed structure and strong concentration bounds? A result you may
want to prove with such a thing is as follows: given a point x in the spanning tree polytope with
x(δ(v)) ≤ O(1) for all v ∈ V, can we produce a spanning tree with maximum degree O(1) which
is O

(
log n

log log n

)
thin?

It turns out the answer is, perhaps surprisingly, yes. This is the subject of the next few lectures
of this course. We will follow a work of Bansal [Ban19], following up on an earlier work of Bansal
and Garg [BG17].

2 Iterative Randomized Rounding

We will start by slightly generalizing what it means for an algorithm to be following the iterative
relaxation framework.

2.1 Iterative Relaxation

Suppose we are given an optimization problem asking to minimize cTx for c ∈ Rn over objects in
Zn, and we have some set of constraints. Abstractly, an iterative relaxation algorithm does the
following given some starting point x0 ∈ Rn:

At every step k, we have some point xk ∈ Rn. Some variables are fixed to integer values
and the remaining nk ≥ 1 of them are fractional (if xk is integral we terminate). The algorithm
then chooses a collection of linear constraints, say given by the rows of a matrix W(k), with
dim(W(k)) < nk, and updates x(k+1) = x(k) + y(k) for some y(k) ̸= 0 obeying W(k)y(k) = 0 and
minimizing cTy(k) if the problem involves costs. Such a y(k) exists since dim(ker(W(k))) ≥ 1 by
our assumption on W(k).

Thus, an iterative rounding algorithm only needs to decide what W(k) is given xk.

2.2 Re-interpreting Beck-Fiala

Let’s rephrase the Beck-Fiala algorithm in this language. We begin with say x0 = 0, and we want
to color every element −1 or 1 to minimize the discrepancy. We first drop every constraint with at
most t entries. We showed that this means that the number of constraints is at most n − 1. So,

2

we choose W(0) to be the set of all remaining constraints. Since there is no cost function, we then
arbitrarily choose any non-zero direction d ∈ ker(W(0)) and move along it until some variable
is set to −1 or 1. We will keep doing this, setting W(k) = W(0), until we reach an extreme point,
i.e. until there is nothing in ker(W(k)). At this point, dim(W(k)) = nk, violating the condition of
iterative relaxation. So, we will update W(k) by dropping constraints that at xk have at most t
entries not set to −1 or 1. This process will continue until we output a coloring with discrepancy
at most 2t − 1.

2.3 Moving Randomly in the Kernel

If we want to inject randomness in this process, we need to do so in our choice of d ∈ ker(W(k)).1

Clearly, one possibility is to choose some d ∈ ker(W(k)) and either move to x + d or x − d with
some probability so as to preserve the expectation of x. This is analogous to what we did with
pipage rounding, which is in fact an example of iterative randomized rounding where W(k) is the
set of tight constraints at xk. And indeed, if we could always choose d to have exactly one −1 and
one +1, this would all work out exactly as things did there: we would have negative correlation
and thus concentration.

However, we don’t a priori know anything about ker(W(k)). There is no guarantee that such
a direction exists there. Indeed, it could be that dim(ker(W(k))) = 1 and nk = n. In this case,
we’re in trouble. What if the kernel is just a line from 0 ∈ Rn to 1 ∈ Rn? Then we may not get an
update to W until we hit 0 or 1. Say xk = (1

2 , . . . , 1
2). Then, we will either output all 0s or all 1s.

This clearly does not obey Chernoff bounds since the expected number of coordinates set to 1 is n
2

but we get all 1s with probability 1/2.

(0, 0, . . . , 0)

(1, 1, . . . , 1)

Figure 1: A problematic 1-dimensional kernel, where we imagine this is an n-dimensional cube.

It turns out it is enough to ensure that dim(ker(W(k))) ≥ δnk for some absolute constant
δ > 0 (and every possible W(k)). Intuitively, this says that there are enough dimensions to move
randomly without creating huge correlations. However, it is not so easy to prove.

One first guess might be to do a random walk in ker(W(k)). It turns out this does not work
as we may still have some highly correlated directions (a nice exercise is to see why this fails).
Instead, we will use a framework called sub-isotropic rounding. To get some context for this
method, we will first learn about isotropic distributions.

1One could also try modifying the subspaces randomly, but this may result in the solution not having the desired
structure.

3

2.4 Isotropy

In physics, an object is isotropic with respect to some measurement if that measurement is the
same over many different orientations of that object.2 For example, a sphere is isotropic. In math,
it has a number of meanings, but we will focus on one for distributions.

Definition 2.1 (Isotropic Distribution). Let µ be a distribution over vectors in Rn. We say µ is isotropic
if its covariance matrix is In, i.e. if Ev∼µ

[
vvT] = In.

Generally we will also study centered distributions, so that Ev∼µ [v] = 0: this translates to the
desire that our updates do not change the expectation of x. Another definition applies to sets of
vectors v1, . . . , vk, and a set is typically said to be in isotropic position if ∑k

i=1 vivT
i = In. Let’s look

at some isotropic sets of vectors.3 (see Fig. 2).

1. Example 1. {(−1, 0), (1, 0)} is not isotropic since ∑ vivT
i =

[
2 0
0 0

]
.

2. Example 2. {(0, 1), (0,−1), (1√
2
, 1√

2
), (− 1√

2
,− 1√

2
)}. Here you can see intuitively that things

are skewed towards some directions, and indeed ∑ vivT
i =

[
1 1
1 3

]
.

3. Example 3. {(1, 0), (0, 1), (−1, 0), (0,−1)} is isotropic, as ∑ vivT
i = I2.

4. Example 4. Say v1, . . . , vk are isotropic and so are v′1, . . . , v′k. Then, for any c, c′, we have:

∑(cvi)(cvT
i) + ∑(c′v′i)(c

′v′Ti) = c2 In + c′2 In = (c2 + c′2)In

So, I can set, for example, c = 1
2 , c′ =

√
3
4 , yielding the last example in the figure below,

which is isotropic.

Figure 2: The left two sets are not isotropic, and the right two sets are.

Why are such distributions (or sets, as above) called isotropic? Well, following the definition
in physics, we should probably measure these distributions in different directions and make sure
they are the same.

How do you measure a distribution in some direction? We already assume that Ev∼µ [v] = 0
(which we will for any update), so, Ev∼µ [⟨c, v⟩] = 0. This is not very interesting and is true for any
centered distribution, including the uniform distribution over the two non-isotropic sets in Fig. 2.

2It comes from the Greek ísos, "equal," and trópos, "turn."
3Dan Spielman says "they look like jacks," see this great talk on the Kadison-Singer problem.

4

https://www.youtube.com/watch?v=kZz5ZNUVBGQ

For an isotropic distribution, we say instead that the variance of the distribution ⟨c, v⟩ should not
depend on the direction of c. This is E

[
⟨c, v⟩2]− E [⟨c, v⟩]2 = E

[
⟨c, v⟩2], and we would want:

Ev∼µ

[
⟨c, v⟩2] ∝ ∥c∥2

And actually this is an equivalent notion of isotropy:

Fact 2.2. µ is isotropic if and only if

Ev∼µ

[
⟨c, v⟩2] = ∥c∥2

Proof.
Ev∼µ

[
(cTv)2

]
= Ev∼µ

[
cTvvTc

]
= cTEv∼µ

[
vvT

]
c = ∥c∥2

As desired.

Why do we care about isotropy? Well, the intuition here should be that if we can get our
updates to be isotropic, maybe we will get concentration, since it means our updates are not
correlated with any particular direction. Unfortunately, there is no hope for this. At step k, if
c ∈ W(k) and y is our update, recall it is required by iterative relaxation that W(k)y = 0. So in
particular, if c ∈ W(k), i.e. the rowspace of this matrix, we must have ⟨c, v⟩ = 0 ̸= ∥c∥2, so we
cannot make our distribution over updates isotropic.

To give a concrete example and type-check what’s been going on so far, suppose

W(k) =

[
1 1 1
0 1 1

]

Then the kernel is generated by the vector

 0
1
−1

, so a generic vector is given by v =

 0
x
−x

.

Take anything in the rowspace of W(k), say c =

6
3
3

. Then ⟨

6
3
3

 ,

 0
x
−x

⟩ = 0 as we claimed

above.
In the next lecture, we will see a weaker definition of isotropy that is possible to obtain and

still implies strong concentration.

References

[Ban19] Nikhil Bansal. “On a generalization of iterated and randomized rounding”. In: Pro-
ceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing. STOC
2019. Phoenix, AZ, USA: Association for Computing Machinery, 2019, 1125–1135. isbn:
9781450367059. doi: 10.1145/3313276.3316313 (cit. on p. 2).

[BG17] Nikhil Bansal and Shashwat Garg. “Algorithmic discrepancy beyond partial coloring”.
In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing. STOC
2017. Montreal, Canada: Association for Computing Machinery, 2017, 914–926. isbn:
9781450345286. doi: 10.1145/3055399.3055490 (cit. on p. 2).

5

https://doi.org/10.1145/3313276.3316313
https://doi.org/10.1145/3055399.3055490

	Overview
	Iterative Randomized Rounding
	Iterative Relaxation
	Re-interpreting Beck-Fiala
	Moving Randomly in the Kernel
	Isotropy

